Figura 1 – Exemplo de equipamentos em uma rede de computadores |
Para que uma rede de computadores possa funcionar é necessário que existam, além do cabeamento propriamente dito, dispositivos de hardware e software cuja função é controlar a comunicação entre os diversos componentes da rede.
Vários dispositivos são usados em uma rede, cada um deles possuindo funções específicas. Como exemplos de equipamentos dedicados podemos citar as placas de rede, os hubs, switches, bridges, routers, etc, que tem a finalidade de interpretar os sinais digitais processados na rede e encaminhá-los ao seu destino, obedecendo a um determinado padrão e protocolo. Essa interação entre dispositivos permite o compartilhamento das informações entre todos os usuários da rede.
Sistema Operacional de Rede
Figura 2 – Exemplo de sistemas operacionais em uma rede de computadores |
O Sistema Operacional de Rede (NOS - Network Operating System) consiste em uma família de programas que são executados em computadores interligados através de meios diversos e dispostos em rede.
A função principal do Sistema Operacional de rede é a administração lógica da mesma, ou seja, o controle de suas funcionalidades; alguns Sistemas oferecem o recurso de compartilhamento de arquivos, impressoras e outros dispositivos através da rede.
Atualmente os modernos sistemas operacionais disponibilizam outros recursos como: segmentação da rede com possibilidade de configuração de redes virtuais, controle de habilitação de portas, proteção contra intrusos, interfaces gráficas mais amigáveis, etc.
Estação de Trabalho
Figura 3 - Estação de Trabalho |
Formalmente, uma Estação de Trabalho nada mais é do que um equipamento pelo qual qualquer usuário poderá acessar os recursos disponíveis na rede.
Todos os usuários têm acesso a uma rede através de Estações de Trabalho que são computadores equipados com pelo menos uma placa adaptadora para interface com a rede (NIC – Network Interface Card).
Repetidores (Repeaters)
Os repetidores são dispositivos de hardware utilizados para a conexão de dois ou mais segmentos de uma rede local. Eles recebem e amplificam o sinal proveniente de um segmento de rede e repetem esse mesmo sinal no outro segmento.
Figura 4 - Repetidor |
Alguns modelos disponíveis no mercado possuem recursos de "auto-particionamento", ou seja, ocorrendo uma falha dos segmentos da rede, o dispositivo irá isolar o acesso à conexão defeituosa, permitindo que a transmissão de dados aos segmentos remanescentes não seja afetada.
Figura 4 - Modelo de repetidor
A limitação do número de repetidores é obtida de acordo com o protocolo utilizado (por exemplo, no protocolo Ethernet o número máximo é de quatro). Um sistema pode conter vários slots de cabos e repetidores, mas dois repetidores não podem estar a mais de 2,5 km de distância, e nenhum caminho pode atravessar mais de quatro repetidores.
Um repetidor atua na camada física do modelo OSI, exercendo função de regenerador de sinal entre dois segmentos de redes locais. Eles são necessários para fornecer corrente e para controlar cabos longos. Um repetidor permite interconectar dois segmentos de redes locais de mesma tecnologia e eventualmente, opera entre meios físicos de tipos diferentes (10base2 e 10base5, por exemplo). Como resultado é possível aumentar a extensão de uma rede local, de forma que o conjunto de segmentos interconectados se comporte como um único segmento.
Modem
O Modem é um dispositivo conversor de sinais que faz a comunicação entre computadores através de uma linha dedicada para esse fim. Seu nome é a contração das palavras MOdulador e DEModulador, pois essas são suas principais funções.
Figura 5 - Exemplo de modem |
O Modem executa uma transformação, por modulação (modem analógico) ou por codificação (modem digital), dos sinais emitidos pelo computador, gerando sinais analógicos adequados à transmissão sobre uma linha telefônica, por exemplo. No destino, um equipamento igual demodula (modem analógico) ou decodifica (modem digital) a informação, entregando o sinal digital restaurado ao equipamento terminal a ele associado.
Figura 5 - Exemplo de placa fax-modem
Para conseguir estabelecer uma conexão com uma linha telefônica, o programa de comunicação envia um comando para o modem solicitando essa conexão, utilizando uma linguagem padrão. O modem do PC que solicitou essa linha (chamaremos de modem local) disca os pulsos do número do telefone. O modem faz o reconhecimento do comando e envia um sinal RDL (Receive Data Line) ao PC na linha de Recepção de dados. Quando o modem que esta do outro lado da conexão (o modem remoto) responde a chamada, o modem local envia um tom de comunicação avisando o modem remoto que ele está sendo chamado por outro modem e o modem remoto responde com um tom mais alto.
Os dois modems realizam um handshake (processo pelo qual trocam informações sobre como irão gerenciar o envio de dados). Aqui se define a velocidade de transferência, o número de bits que sinalizarão o início e o fim, no caso de modem analógico, se irão utilizar bits de paridade, se irão operar em Half-Duplex ou Full-Duplex. Se o sistema local e remoto não usarem a mesma configuração, ficarão enviando caracteres que não fazem sentido ou não se comunicarão de forma alguma.
Do outro lado da linha, o modem remoto escuta os dados que estão chegando com uma série de tons em diferentes freqüências. Ele demodula estes tons em sinais digitais enviando-os ao computador receptor. Ambos os computadores podem enviar e receber sinais ao mesmo tempo, porque o uso de um sistema padrão de tons permite que os modems de ambos os lados diferenciem os sinais de entrada e saída.
No momento em que é informado ao programa de comunicação para que ele finalize uma sessão, o programa envia outro comando HAYES ao modem para que ele desfaça a conexão telefônica. Se a conexão for desfeita pelo sistema remoto o modem irá enviar um sinal de Detecção de Linha (CD) ao computador, informando ao programa que a comunicação terminal terminou.
Roteadores (routers)
O Roteador é um equipamento responsável pela interligação das redes locais entre si e redes remotas em tempo integral. Em outras palavras, permite que uma máquina de uma dada rede LAN comunique-se com máquinas de outra rede LAN remota, como se as redes LAN fossem uma só. Para isso, ele usa protocolos de comunicação padrão como TCP/IP, SPX/IPX, Appletalk, etc. Têm a função de decidir o melhor caminho para os "pacotes" percorrerem até o seu destino entre as várias LAN’s e dividem-nas logicamente, mantendo a identidade de cada sub-rede.
Figura 5 - Exemplo de roteador
Na prática os roteadores são utilizados para o direcionamento de "pacotes" entre redes remotas, atuando como verdadeiros "filtros" e "direcionadores" de informações. Recursos como "compressão de dados" e "spanning tree" (técnica que determina o percurso mais adequado entre segmentos, podendo inclusive reconfigurar a rede, em casos de problemas no cabo, ativando um caminho alternativo), compensam inconvenientes como velocidades de transmissão ao utilizarmos modems ou linhas privadas como meio de transmissão de redes remotas.
Os roteadores possuem várias opções de interfaceamento com LAN’s e WAN's. Por exemplo, podemos ter opções de interfaces LAN, portas UTP, FDDI ou AUI, através dos quais poderá ser realizada a conexão com a rede local. As interfaces WAN's servem para realizarmos a conexão com dispositivos de transmissão remota (modems), seguindo os padrões de protocolos V-35, RS-449, RS-232 entre outros.
Figura 6 - Interligação de duas redes LAN
Devido às suas habilidades sofisticadas de gerenciamento de redes, os roteadores podem ser utilizados para conectar redes que utilizam protocolos diferentes (de Ethernet para Token Ring, por exemplo). Como o roteador examina o pacote de dados inteiro, os erros não são passados para a LAN seguinte.
Conforme mencionado, este equipamento atua nas camadas 1,2 e 3 do modelo ISO/OSI. Através de uma série de regras como: rotas estáticas inseridas no roteador, rotas dinâmicas aprendidas através de protocolos de roteamento usado entre roteadores (RIP, OSPF, etc), o roteador consegue rotear pacotes de dados recebidos por um determinado caminho.
Os roteadores são capazes de interpretar informações complexas de endereçamento e tomam decisões sobre como encaminhar os dados através dos diversos links que interligam as redes podendo incluir mais informações para que o pacote seja enviado através da rede. Por exemplo, um roteador poderia preparar um pacote Ethernet em um encapsulamento com dados que contém informações de roteamento e de transmissão para ser transmitido através de uma rede X.25. Quando esse "envelope" de dados fosse recebido na outra ponta, o roteador receptor retiraria os dados X.25, e enviaria o pacote Ethernet no segmento de rede local associado.
Os roteadores podem selecionar caminhos redundantes entre segmentos de rede local e podem conectar redes locais usando esquemas de composição de pacotes e de acesso aos meios físicos completamente diferentes. No entanto, por causa de sua complexidade e funcionalidade, um roteador é mais lento do que uma Bridge. Ele lê as informações contidas em cada pacote, utiliza procedimentos de endereçamento de rede para determinar o destino adequado e então recompõe os dados em pacotes e os retransmite.
Os roteadores são bem utilizados no meio Internet / Intranet e para comunicação LAN-to-LAN (como, por exemplo, ligação matriz-filial). No meio Internet / Intranet, o roteador aparece na ligação do site do provedor (rede local do provedor) ao link Internet, bem como na conexão do provedor a sub-provedores via LP de dados (especializada), LP de voz (não especializada) ou mesmo linha discada. Matriz e filial pode usar a Internet para este fim, usando algum artifício de proteção nas pontas para evitar acesso público, o chamado software de firewall.
Na comunicação LAN-to-LAN, a matriz pode ser conectada às filiais através do roteador usando LP (dados ou voz) ou mesmo rede de pacotes.
Figura 7 – Interligação de duas redes LAN e o provedor
Hub
Um hub, concentrador ou Multiport Repeater, nada mais é do que um repetidor que, promove um ponto de conexão física entre os equipamentos de uma rede. São equipamentos usados para conferir uma maior flexibilidade a LAN’s Ethernet e são utilizados para conectar os equipamentos que compõem esta LAN.
Figura 9 - Hub |
O Hub é basicamente um pólo concentrador de fiação e cada equipamento conectado a ele fica em um seguimento próprio. Por isso, isoladamente um hub não pode ser considerado como um equipamento de interconexão de redes, ao menos que tenha sua função associada a outros equipamentos, como repetidores. Os hubs mais comuns são os hubs Ethernet 10BaseT (conectores RJ-45) e eventualmente são parte integrante de bridges e roteadores.
Os Hub’s permitem dois tipos de ligação entre si. Os termos mais conhecidos para definir estes tipos de ligações são: cascateamento e empilhamento:
Cascateamento: Define-se como sendo a forma de interligação de dois ou mais hub's através das portas de interface de rede (RJ-45, BNC, etc);
Empilhamento: Forma de interligação de dois ou mais hub’s através de portas especificamente projetadas para tal (Daisy-chain Port). Desta forma, os hub’s empilhados tornam-se um único repetidor. Observar que cada fabricante possui um tipo proprietário de interface para esse fim o que limita o emprego do empilhamento para equipamentos de um mesmo fabricante em muitos casos.
Com o uso do hub o gerenciamento da rede é favorecido e a solução de problemas facilitada, uma vez que o defeito fica isolado no segmento da rede, bem como facilita a inserção de novas estações em uma LAN.
Quando acontece de ocorrer muitas colisões, o hub permite isolar automaticamente qualquer porta (autopartição do segmento). Quando a transmissão do primeiro pacote é satisfatória, o hub faz uma reconfiguração automática do segmento.
Bridges
As Bridges (ou pontes) são equipamentos que possuem a capacidade de segmentar uma rede local em várias sub-redes, e com isto conseguem diminuir o fluxo de dados (o tráfego). Quando uma estação envia um sinal, apenas as estações que estão em seu segmento a recebem, e somente quando o destino esta fora do segmento é permitido a passagem do sinal. Assim, a principal função das bridges é filtrar pacotes entre segmentos de LAN’s.
Figura 11 - Bridge com saída para cabo coaxial. |
As Bridges também podem converter padrões, como por exemplo, de Ethernet para Token-Ring. Porém, estes dispositivos operam na camada "interconexão" do modelo OSI, verificando somente endereços físicos (MAC address), atribuídos pelas placas de rede. Deste modo, os "pacotes" podem conter informações das camadas superiores, como protocolos e conexões, que serão totalmente invisíveis, permitindo que estes sejam transmitidos sem serem transformados ou alterados.
As bridges se diferem dos repetidores porque manipulam pacotes ao invés de sinais elétricos. A vantagem sobre os repetidores é que não retransmitem ruídos, erros, e por isso não retransmitem frames mal formados. Um frame deve estar completamente válido para ser retransmitido por uma bridge. São funções da Bridge:
- Filtrar as mensagens de tal forma que somente as mensagens endereçadas para ela sejam tratadas;
- Ler o endereço do pacote e retransmiti-lo;
- Filtrar as mensagens, de modo que pacotes com erros não sejam retransmitidos;
- Armazenar os pacotes quando o tráfego for muito grande;
- Funcionar como uma estação repetidora comum.
A bridge atua nas camadas 1 e 2 do modelo de referência ISO/OSI, lendo o campo de endereços de destino dos pacotes de mensagens e transmitindo-os quando se tratar de segmentos de rede diferentes, utilizando o mesmo protocolo de comunicação.
Gateway
É um dispositivo que permite a comunicação entre duas redes de arquiteturas diferentes. Ele atua em todas as camadas do modelo ISO/OSI.
Este equipamento resolve problemas de diferença entre tamanho máximo de pacotes, forma de endereçamento, técnicas de roteamento, controle de acesso, time-outs, entre outros. Como exemplo de gateway podemos citar um produto que integra redes TCP/IP com redes SNA.
Figura 9 - Aplicação de bridge e gateway na conexão de LAN’s
Switch
Figura 12 - Switch |
Trata-se de uma evolução do hub, com funções de pontes e roteadores e hardware especial que lhe confere baixo custo e alta eficiência. Ele possui barramentos internos comutáveis que permitem chavear conexões, tornando-o temporariamente dedicado a dois nós que podem assim usufruir toda capacidade do meio físico existente.
Em outras palavras, o switch permite a troca de mensagens entre várias estações ao mesmo tempo e não apenas permite compartilhar um meio para isso, como acontece com o hub. Desta forma estações podem obter para si taxas efetivas de transmissão bem maiores do que as observadas anteriormente.
O switch tornou-se necessário devido às demandas por maiores taxas de transmissão e melhor utilização dos meios físicos, aliados a evolução contínua da micro-eletrônica.
Transceiver
É um dispositivo de hardware que faz a conexão eletroóptica (transforma um sinal elétrico em sinal óptico e vice-versa) entre computadores de rede que usam fibra óptica e cabeamento metálico convencional.
Figura 13 - Exemplos de transceivers
Concentradores
São dispositivos com buffer de armazenamento que altera a velocidade de transmissão de uma mensagem. Eles são comutadores de linha, que armazenam a mensagem para posterior envio ao computador central. Geralmente possuem capacidade de processamento local e sua velocidade é elevada para poder aceitar mensagens de vários terminais ao mesmo tempo.
O concentrador coleta mensagens do usuário numa área fisicamente próxima. Juntamente com a mensagem é enviada a identificação do terminal. As mensagens são montadas no buffer do concentrador até que este receba do usuário um delimitador.
Os concentradores remotos oferecem alta flexibilidade, permitindo acomodar interfaces para terminais especiais, proporcionando maior taxa de concentração, possibilitando atender a mudanças nas velocidades de transmissão nos formatos, nos códigos, nos protocolos de transmissão e no número de equipamentos terminais conectados.
Placas de Rede
A placa de rede ou adaptador de LAN ou ainda NIC (Network Interface Card) funciona como uma interface entre o computador e o cabeamento da rede. Normalmente é uma placa de expansão que deve ser conectada em um dos slots localizados na parte traseira do computador. Juntamente com o Sistema Operacional, a placa de rede trabalha para poder transmitir e receber mensagens a partir da rede. Suas principais funções são: mover os dados para dentro da memória RAM do computador, gerar o sinal elétrico que trafega através do cabo da rede e controlar o fluxo de dados no sistema de cabeamento da rede.
A placa de rede possui uma área de armazenamento (buffer) que retém os dados por um certo período de tempo para compatibilizar a velocidade de tráfego, pois, no computador, os dados são processados em "bytes" (forma paralela) e no cabeamento da rede o tráfego é processado 1 bit por vez (forma serial).
A técnica que os adaptadores da LAN utilizam para controlar o acesso ao cabo e o tipo de conector deste cabo são atributos da arquitetura da rede utilizada.
As seguintes especificações devem ser levadas em consideração ao especificar qual placa de rede deve ser utilizada:
Tipo de Barramento: Especifica a interface da placa de rede com o computador (ISA, EISA, PCI e MCA).
Conector da Placa: Especifica o tipo de interface a ser utilizada pela placa de rede quando do acesso ao meio físico. Os principais tipos são: RJ, BNC, ST, RJ/BNC, RJ/BNC/AUI, RJ/ST, MIC.
Padrão: Define o padrão de rede a ser utilizado. Os principais tipos são: Ethernet, Fast-Ethernet, Token-Ring, FDDI, ATM.
Velocidade de Transmissão: É a velocidade com que as informações trafegam pelo meio físico: 4Mbps, 10Mbps, 16Mbps, 100Mbps e outras.
Figura 12 - Modelo de placa de rede (NIC)
Multiplexador
Dispositivo usado para permitir que uma única linha de comunicação seja comutada com um computador. Isso pode ocorrer porque algumas linhas podem ficar inativas por longos períodos de tempos, com nenhum ou pouquíssimo fluxo de dados entre o terminal e o computador. Se os períodos ativos das várias linhas nunca coincidirem, uma única linha pode ser comutada para atender a vários terminais.
Se não for possível assegurar que somente um terminal esteja ativo em um dado instante de tempo, é preciso proporcionar uma linha saindo do comutador com uma capacidade maior do que qualquer outra linha de entrada. Se a capacidade da linha de saída excede a soma das capacidades de todas as linhas de entrada, o comutador executa a função de multiplexador.
A multiplexação pode ser efetivada dividindo-se a banda de freqüência do canal de maior velocidade em várias bandas mais estreitas e alocando cada uma delas a um dos terminais. Essa forma de multiplexação é conhecida como FDM - Frequency Division Multiplexing.
Uma forma mais sofisticada consiste em amostrar cada linha oriunda de um terminal, seqüencialmente, enviando o sinal recebido por um canal de alta velocidade. Essa forma é conhecida como TDM - Time Division Multiplexing. No caso anterior, a velocidade de transmissão oriunda de cada terminal não pode exceder a capacidade do canal que lhe foi alocado.
Apostila Redes Industriais pode ser baixado em: 22_03_01 Rede Industriais.
© Direitos de autor. 2022: Gomes; Sinésio Raimundo. Última atualização: 15/03/2022
Nenhum comentário:
Postar um comentário